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Here interpolation is meant in the following sense: given /'€ Cla. b|. and given a
set of distinct points in [a,b] and a linearly independent set Ju,...u,} of
continuous functions on |a. b|, the interpolating function L/ is the unique linear
combination of u,...., u, that coincides with f at the given points. if such a linear
combination exists. In the classical case of Lagrange interpolation, u;(x) is a
polynomial of degree /. Here we allow other choices, and prove a generalization of
the mean-convergence theorem of Erdds and Turan: it is shown that if a certain
condition is satisfied, then L/ converges to /. in an appropriate L, sense. for all
continuous functions / for which #,(f)— 0. where #,(f) is the error of best uniform
approximation by a linear combination of u....u,. In particular, this mean-
convergence property is shown to hold for interpolation by the leading eigen-
functions of a regular Sturm-Liouville eigenvalue problem. if the interpolation
points are taken to be the zeros of the “next™ eigenfunction. (The cigenfunctions arc
ordered so that the eigenvalues increase.)

1. INTRODUCTION

In this paper interpolation refers to the process of constructing a
continuous curve through the points at which the values of a continuous
function are known. More precisely, suppose that fis a continuous function
on a closed interval |a. b|, and that its values are known at »# + | distinct
points x{"...., x!"” in the interval. Traditionally, the interpolation between the
points has been carried out with polynomials or piecewise polynomials. Here
we allow the interpolating function to be of the form

L,,(X)— }_ L((-").

11
i 0

(n)

where {u{"....,u{”} is a linearly independent set of real-valued continuous
functions on |a, b|. The coefficients a,...., a, are of course determined by the
interpolation requirement,

LI (™) = f(x§"), j=0...n.
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98 IAN H. SLOAN

Clearly. L/, exists and is unique for all /€ Cla. b] if and only if the matrix
{uf(x{")} is nonsingular,

An interpoiating function L/, may exist and yet be not at all a good
approximation to f. {Think of polynomial interpolation at equally spaced
points.} In the present work our interest is in showing that under certain
conditions L7, is a good approximation to f when n is large. More precisely
we show that under appropriate conditions L/ converges to / in a certain
mean-square sense: and also that the error in this sense 15 less than a
constant multiple of the error of best uniform approximation to /by a lincar
combination of wy'... u!"

Little seems to be known about the convergence of interpolatory approx:
imations. except for three special choices of the interpolating functions:
polynomials, trigonometric polynomials. and splines. In the polynomial case
it is known that the interpolation points must be carefully chosen. but that if
an appropriate choice is made then the convergence behavior of L. «
variety of senses. is highiy satisfactory if /' is reasonably weli behaved. (For
summaries of known results for these cases see [1.5-7.10].) But for other
choices of interpolating functions it seems that little or nothing is known
about convergence, and consequently no guidance is available as to how o
choose the interpolation points. The lack of such guidance makes inter
polation with respect to nonpolynomial systems a risky enterprise in
practice.

The first aim of the present work 1s to extend to more general systems the
celebrated theorem of Erdds and Turan }2. 5. Chap. 3. Sect. 31 on the mean
convergence of polynomial interpolation. The extension ¢ stated  as
Theorem | in Section 2.

The Erdés-Turan theorem states: Let w € L,{a. &) and satisty wi{vy. 0
a.e. on the finite interval g bl and let (P, be a system of polvnomials
orthogonal with respect to « on the interval |a. bl with P, of degree m. If
1./ denotes the unigue polynomial of degree <» that interpolates [ at the

zeros of P, {(x). then
.t

L) — FLol o) dx = 0. ()

T

lim |
o
for all f& Cla. bl.

An important corollary of the Erdés—Turan theorem. via the
Banach—Steinhaus theorem. is that

where ¢ is a constant, [} -] is the mean-square norm

) 172
= | [ o o) d
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and £,(f) is the error of best uniform approximation to by a polynomial of
degree <#,

E\(f)= min |.f—pil, .

Thus the Erdés—Turan theorem guarantees not only the convergence of L/ to
/< but also its rate of convergence—the convergence is at least as fast as that
of the best uniform approximation to /.

Theorem 1. our generalization of the Erddés—Turan theorem. requires for its
statement a generalization of £, (/). namely.

' o o - -
/zz(../ ) - ) I}’lm j/.. }_ (!ii;-'i

|I M
e oo o

Thus #,(f) is the error of best uniform approximation to f by a linear
combination of uy"...., u}”. Theorem I states. in rough terms. that if a certain
condition holds, then ||L! — /|| converges to zero for all continucus functions

[ for which #,(/} — 0. Moreover. the theorem also yields

T =< e ()

for all sufficiently large n. so that as in the polynomual case the theorem
guarantees not only the convergence of L/ to f but also its rate of con-
vergence.

A general theorem without particular application is vacuous. Wg have
therefore applied Theorem 1 to the case of interpolation by the eigen
functions of a Sturm-Liouville eigenvalue problem, to obtain the following
proposition. No previous convergence results for this system seem to be
known. {The paper by Jensen 3] uses interpolation in a different sense from
that used here.)

ProrosiTioN.  Consider the eigenvalue problem

plxy u”(x) + glx) ' () + [rx) + A u(x) = 0. (23

with boundary conditions

cosa ula) +sina u'{a)=0,

(3)

cos f u(b)y+sinf w'(b)=0.
where p € C*la, b|, g€ C'|a, b|, r € Cla, b, p(x) > 0, and g(x), r(x), «, and
f are all real. Let ug, u,...., be the eigenfunctions, ordered so that the eigen-
values A, are increasing, and let L' be the unique linear combination of
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Uy U, that coincides with [ at the n+ 1 zeros of u,. (x) that lie in the
open interval {a. b). Furthermore, let
! Y oglx”)
{x) = ~——ex - dx’ j. {4y
0=t P . pix’) |

Then the limit (1) holds for all f& Cla,b|. provided J satisfies f(a) =0 if
sina =0, and f(b) =0 if sin = 0. Moreover

H L{u - /‘( & C/[I"(./')’

where <[} is the error qf best uniform approximation to f bv linear
combinations of uy...., u,. and ¢ is a constant.

The proof is given in Section 3. Because (x) given by (4) is bounded
below by a positive constant. the result also holds if w{x) is instead set equal
to 1. However, the weight function given by (4) is in a sense the natural
weight function for this problem {see Section 3).

The proposition as stated allows no freedom in the choice of interpolation
points. However, for the special case p(x) = 1. g(x) = 0 the same result holds
also for some other choices of the interpolation points. The details are given
in Section 4.

To illustrate the above proposition. consider the following eigenvalue
problem, based on the Bessel equation:

1

u"(x)+ L w'(x)+ (,{ —- L) u(x) = 0.
.\‘ »Y ¥

with boundary conditions

where 0 < a < b. The eigenvalues A, = s, are determined by
J s, b)Y (s,a) =Y (s,b)J s, a).
and an eigenfunction u, corresponding to 4, is
u,(xy=JLs,x) Y (5,a)— Y (s,x)J.(s5,a)

The proposition asserts that interpolation based on the leading eigenfunctions
y...., u,. with the interpolation points taken to be the interior zeros of
u, , {x}. converges to f/ in the mean-square sense for all continuous functions
Jf that vanish at ¢ and b. It also asserts that the mean-square error converges
to zero at least as fast as the error of best uniform approximation to /by a
linear combination of ug.....u,,.
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2. GENERAL THEORY

We suppose that the interpolating functions #{" and interpolation points
X, i=0,.. n, are specified for all n >0, that L/, is defined as in the first

1
paragraph of Section 1, and that w € L {(a, b) is a given nonnegative weight
function. The finite-dimensional subspace spanned by u{"....u!" is denoted
by U,.

Corresponding to the choice of the interpolating functions {u!{""!, there
exists a natural space of continuous functions within which to set the theory:
let #|a, b] = Cla, b] be the subspace of continuous functions fon |a. b| for
which #,(f)— 0. It is easily verified that #’[a.b| is a closed subspace of
Cla, b with respect to the uniform norm. thus #’|a. b} is a Banach space in
its own right.

The first result is a necessary and sufficient condition for convergence to
hold for all f&€ #|a. b]. Here ||L, || is defined by

1L
W T

Lemma,  The limit (1) holds for all f€ #|a.b| if and only if

L=

n

If either condition holds then
WL, =S <e®(f) fe#la bl (6)

where ¢ is a constant.

Proof. (<) Mpose that (5) holds. If f€ ¥ |a.b| and u € U, then

1L, —fl=ILY "~ w)
<ILY O+ 11—l
<L =ull, M= ul,

where

12

- (‘” wix)dr )

Since u is an arbitrary element of U, it follows that

n

1L, —fl < (SUPl|LmH+M W

which converges to zero as n-—+ oo because f€ #’|a, b|. Also (6) clearly
holds with ¢ =sup,|L,| + M.
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(:>) It follows from the assumption that

sup | L1 < oo.
for each fin #’|a, b]. Then (8) follows from the Banach-Steinhaus theorem.
because #|a. b} is a Banach space. 1

Now define the inner product

h
(. 0)= | uw(x)ye(o elxyda
Y
and let ey 0" be any basis for U
to this inner product——that is.

‘lli. 1‘,‘) == ()

which 1y orthonormal with respect

#
i 0 ijgn

(From this point on we shall omit the label 2 on "' (™

no risk of confusion.) Then define

. ete. when there 13

K ey =N oo den

[T

a quantity that is clearly invariant under a change from one orthonormal
basis to another. and that s closely related to orthogonal projection onto
U, . in fact K, (x,y)w(y)is the kernel of the integral operator that projects
orthogonally onto U,

We now state the principal result, {Note that the first condition i the
theorem will in most cases be satisfied only for special choices of the points
RPN

THEOREM 1. Suppose thal for all n sufficiently large we harve

LK )

N (p ] - 0 7
Pk J o U . (7
"—(} Kn(x}‘ \‘,) h
and
n< ; ’ ‘
N e < P (8)

o Kt x))

where p and m are constants. Then L, exists and is unique for n sufficiently
large, and the limit (1) holds for all f€ ¥ la. bl. Moreover for n sufficiently
large

LS =< e

where ¢ is a constant.
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The theorem is proved below. First, however, we show that for the
polynomial case the theorem vields the Erd6s-Turan result stated in
Section 1. If we assume for convenience that the orthogonal polynomials
{P,} satisfy [P =1, then for this case we have. from the Christof-

#

fel-Darboux identity |8. p. 43 1.

K (0. 3)= N P} PLy)
i
K PiHl(".)Pn(—V)‘r PH("C)PL“}{)‘)

#

kn [ X—1

.

where P (x)=/k,x" + ... Thus if x,...x, are taken to be the zeros of
£, (x). then for i#j we have K, (v,.x;})=0, so the condition (7) is

certainly satisfied. On the other hand it is shown by Szegd [8. p. 48/ that
Kix, x)y=u".

where g, is the Christoffel number (or. in other words. the Gauss quadrature
weight) associated with the point x;. Thus

n l n -
N = Ny = | w(x) dy < o,
Y ( QR 6 SP 71 Su

i

where in the last step we have used the fact that the Gauss quadrature rule
Su glx)x ITg(xyw(x)yde is exact for the function g(v)=1. Thus
Theorem | is applicable to the polynomial case. and we recover the

Erdés—Turan result.
Proof of Theorem 1. Let A, € U, be defined by

oo Klxox)
A= Ty

and let A" be the square matrix defined by

Af;?) — '}Li(xi} — _"Q..‘,EL)_’
: - K, (x,.x)
We shall show that A" is nonsingular if n is sufficiently large. from which it
follows that L/, exists and is unique for large n.
If ||| -|I| denotes the matrix norm

#

A )= max N Ag,
0 jsn ,.‘—;) -
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then the first condition in the theorem is equivalent to
A =1 <p < 1,

where /' is the unit matrix of order n + 1. From this it follows immediately
that A" is nonsingular, and in fact

A < —-py

so that the inverses are bounded independently of n.
Now define /. € U, by
L= N (A™ Ny . i= 0. (1o

ko0
Then it is easily verified that
lix;) = 0y,

and from this it follows that the interpolating approximation L/, is given by

Li(x) =Y 1{x)flx). (11
Pou
The latter expression is analogous to that for Lagrange interpolation n the
polynomial case, and the functions {/,.....{,} correspond to the fundamental
Lagrange polynomials.
It follows from (10) and (11) that
i "
LT =0 L= X N Fa)( 1) S ()
i njon
NN SR,
[
a "
LUAT N N A A

A-ofr {0

Now from (9) and the definition of K, it follows that

Kn(xk N .\'[t)
K (x X0) K (x x))

(A d))=

thus with the aid of the conditions (7) and {8) in the theorem we have

" H
NN A <+ p)ym
E 0O+ 0
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Therefore for n sufficiently large we have

ILLP < (L=p) 21+ p)m| £’

and hence

iEL"{fé\ {1 *p)’(} +p)!!3 mi?

the right-hand side of which is independent of n. The remainder of the
theorem now follows from the lemma. [

It may be instructive to note that in the classical case. where u; is a

polynomial of degree i and x,...., x, are the zeros of P, . (x). we have the
simplifications
Ko, )
L{ix)=4 L— =u; K
(’() (Y) Kn( ~u1 N(\I ’()
Kn(xi ’ ,\';»)

([‘" 11) = (Afﬂ ’1,) =

Kn(xi' xi') Kn(xi‘ xi) o

Thus in the classical case

< X N

nil
i () i ()

n b
=N w s = | owdcl /I

[t va

so that it is almost trivial to show that the norms ||L,| are uniformly
bounded. In general, however, that is not true.

3. INTERPOLATION BY STURM—LIOUVILLE EIGENFUNCTIONS

We now prove the proposition stated in Section I, on the mean
convergence of interpolation by eigenfunctions of the boundary-value
problem defined by (2) and (3).

As it stands, that boundary-value problem is not in self-adjoint form, but
it becomes so on multiplying (2) by the integrating factor w(x) defined by
(4). It then follows from the classical theory that the eigenvalues are real and
have their only accumulation point at +co, and that the eigenfunctions
Hy. Uy are uniquely determined apart from a multiplicative factor, and are
orthogonal with respect to the weight function w(x).

Moreover, it follows from the work of Gantmacher and Krein (see |4,
pp. 33-36]) that u,, ,(x) has exactly n + | zeros in the open interval (a, b),



106 IAN H. SLOAN

and also that the matrix {u{t;)}]; , has nonzero determinant if f,....1, are
any distinct points in (g, b). From these two properties it follows that the
interpolating function L/, which is the linear combination of u,... u, that

interpolates / at the interior zeros of u,,, {x). exists and is unique for every
value of n.

The task before ur is to prove the mean convergence ol L7, to f for
JE Cla, bl. provided that f(a) vanishes if sing =0, and f(b) vanishes if
sin f=0. We first prove the result for the simpler differential equation

) Xy = A u(xy =00 {12y

and the boundary conditions {3}, and then at the end of the section extend
the result to the more general probiem.

The first step is to identify, for this simple problem. the space ¥ ja. b]. Lo
the space of continuous functions for which < (/)0 as # - oo, It may be
shown that every continuous function f belongs to “la, b1 provided that
Jla)y=0 if sing=0 and f(b)=0 if sinfi=0. Consider first the case
sin g # 0 and sin f# 0. Given /€ Cla. b| and ¢ > (. the Weierstrass theorem
assures us that there exists a cosine polynomial of the form

"
B fLox
g{x) = N g, cos [ i

it b~ a

such that |/ g, < &2, In wrn g can be uniformly approximated to an
accuracy of #/2 by the nth partial sum of its Sturm-Liouville series with
respect to uy. i ..., il 1 is taken sufficiently large. This follows from o resuls
of Titchmarsh 9. Eq. (1.9.3)]. which shows that for integrable g the purtial
sums of the Sturm-Liouville and Fourier cosing series for g differ by =
quantity that is uniformly of order o(1). provided sin « = 0 and sin /i # 0. (A
trivial extension of Titchmarsh's argument s required o establish
uniformity.) Of course with g defined as above the Fourier cosme series of ¢
is just g itself for n sufficiently large. so the result follows. A similar
argument holds if sin« # 0 but sin ff= 0, or W s sin 7 O exgept dhiat
one must now use trigonometric polynomials that vanish at one or both ends
as appropriate—in the latter case, for example. the cosine polynomials must
be replaced by sine polynomials. The argument then goes through exactly as
before, provided that flx} vanishes at one or both ¢nds as appropnate.

The next step is to prove the mean convergence of 1 to / for all
J€ #a. b|. For the present case of the differential equation 112). the weight
function defined by (4) reduces to wix)= 1. so that the inner product
becomes simply

(e 0) = | uix) eix) dx.
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If we assume for convenience that the eigenfunctions are normalized by
(u;, )= u;* = 1, then the orthogonality relation for the eigenfunctions
becomes

(uj u)=98,.  i,j=0. L.

Consequently, the kernel K, (x, 1) can be written as

n
K (x. 3= N ufxyudy)
i 0

For Theorem ] to be applicable we must show that K, satisfies the
conditions (7} and (8). where x,...x, are the zeros of u,, ,{x). Our
approach to this is to develop asymptotic expressions for K,{x,.x;) by
means of the contour integral methods used by Titchmarsh |9, Chap. [] to
study Sturm—Liouville series.

If 4 is an arbitrary complex number, Titchmarsh shows that Green's
function for the differential operator in (12) and the boundary conditions (3)
s

Glx. 1 A) = y(xi4) ¢( v )/ w(h), Y.
=o(x: A) y(r: A) wlA) X &I
where ¢ satisfies the differential equation (12} and tne boundary conditions
¢lar A} =sin . o'{a; 2) = --¢os a. {13y
v satisfies (12) and the boundary conditions
x(bia)=sinf, (b1 A) = —-cos fi. (14)
and w{A) is the Wronskian

w(AY=o{x: Ay (v Ay — @i Ay pin AL

Titchmarsh also shows that «w(4) is an entire function of 4 with zeros at the
cigenvalues 44.4,.... and that the residue of G{x.):i} at A=/, is
wx)u,(r) It follows that K (v,)) can be evaluated by integrating
G(x.v: A) around an appropriate contour in the 4 plane.

Now let 4 =s2. and write s = a + it. with &> 0. Then Titchmarsh shows
19. p. 10] that if |si is sufficiently large. then

p(x; Ay =sinacos s{x ~ a)+ Ofis] el
if sin @ # 0, and

#(x:1 4) = —cos ¢ +O(s] ettt
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if sina = 0. Similarly,

6'(x: A1) = —ssinasins(x —a)+ O™ “).
if sin o +# 0, and
Ity a))

¢'{x; &)= —cos acos S(x—a)+ Ofsl 'e

if sin ¢ = 0. Similar asymptotic expressions hold for y{x: 1) and y'{x:4).
In each of the above expressions, and in similar expressions throughout
this section, the error terms are uniform for a < x < b. Thus. for example,

[O(s] "elt My eis| el

where ¢ is independent of x and s.
It follows from the asymptotic expressions for ¢{x: 4) and y(x: A} that

w(A) = sin a sin f s sin s(b — a) + Ofe'!"* "), (15)
if sin ¢+ 0 and sin f§ # 0,
w{A) = —sin g cos fcos s(b — a) + O(si ! @y,

if sinas 0 and sin /=0, and

sin s(b — a) s
(*;“"*‘V“«L O(M \(,,1.1.{ u ).

w{A)=cosacosf

fsinag=sinfi=0,

First consider the case sina# 0. sinffi#0. Following Titchmarsh
19 p. 131, for this case we take the upper half of the 4 contour to correspond
to the quarter square in the s plane defined by

/2Y) 7 n
g = S’iﬁﬁﬂf R O fﬁiﬂ@lﬂ (16)
b—a b a

and

(27

=020, {:7(II+U/3~)l§‘
b—a

b—a

(17

The lower half of the A contour is then obtained by making the contour
symmetric about the real axis.
On this contour we have

isin s{b -~ a)| > Ae'™M"

where 4 is a positive constant. Hence it follows from (15) and from
Rouché’s theorem 19. p. 19} that for n sufficiently large there are exactly
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1+ | zeros of w(4) inside the contour. Moreover, for 4 on the above contour

we have
i i i
1+ 0O (,““)
18

w(A)  sinasinfssin s(b—a)

Thus for sin a # 0 and sin f = 0 it follows that

»o(giei““”)\ (18)

Glx. v Uﬁcoss(b«x)coss{yfa)4
l.ria)= s sin s(h —q)

for 4 on the contour and y < x.

A similar argument holds if sin a0 and sinff=0. except that the
contour needs to be modified by replacing # + 4 by n+ 1 in (16) and (17).
and sin s(h — a) has to be replaced by cos s(b - a). The resulting asymptotic
expression for G(x, 1 4) is

Gl Ay =

sin s{b — x)cos s{ v —a) ( TR \'1)
_ + e U .
scos s(h— a)

for 2 on the contour and v < x. Finally, if sin ¢ = sin § = 0, then n ~ { needs
to be replaced by »n + ;‘ in (16) and (17}, and the result is

sin S(b —x)sins(ry—a) + 0 (_E? e 1Y n).

Vg /

Glx.piA)y = —

ssin s(b—a)

for 4 on the contour and y < x.
In each of the three cases we have. for # sufficiently large.

1 .
K (x.y)= Y;] Glx. v ) di.

2

if the integration is taken around the appropriate A contour defined above.
For the case sina+#0 and sinffi 0 we find, by using (18) and then

integrating explicitly,
Xy x4+ vy~ 2a
R ey

/ [
+ 0 (-—~ ) X #FE 7,
nlx—yl,

{ 2x —2a N
D e H »
7 FjL . (7‘( py—p )JLO(])

1
Kol y) = 5—

(19)

Kn(”(’ X) = b

640392 2
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where D, () is the Dirichlet kernel,
sin(n + (1/2)) 6

2sin¢/2

IS
D)=~ + N cosif =

il

Similarly. for the case sin « # 0 and sin = 0 we find

Cr TN P T
K= ~al g ( b~a)+D” (n b-—a )
1
o(—
f (n(xw\’) v
N {20)
K, (x, x)=~——o ln+1)‘,,“( ' "i) +0(1)
- —a
where
" ) 1 sin{n + 1) #
DGy =\ 3 — | =
n(0)= 2 cos ('* 2) 3 sin 62
and for the case sina=sinfi=0
O p— '1) ( Al ‘) (n‘i‘)—z—” l
T AT b —a me bh—a )
/ 1
+0 (ﬁ*f) X#E
nix— v,
(21}
K, (5 x) = - D, (x4 oy
Ll X b 4 n ,,‘1(71 b g ) ().

The next step is to find asymptotic estimates for the zeros of u, _ {x). That
requires first the development of asymptotic estimates for the eigenvalues
A,=s,;.n=0,1... Consider the case sin « # 0 and sin ff = 0. For this case
we know already that

(n—(172))n 4+ (12
—_—— 5,
h—a b—a
if n is sufficiently large. A tighter estimate for s, follows from the property
w(4,) = 0. which by (15) implies
s,sins,(b—a)=0(1).
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On substituting s, = nn/(b — a) + 7, it follows readily that 7, = O(1/n), and
hence

nn 1\
- | o(w.
S b~ajL (n)

Similarly, for the case sin a3 0 and sin f=0

" b—a

_(n+(1/2)n Lo (L)

and for the case sina=sinf=0

_(n+ D7 1
T T +O(n)'

From the classical results on the zeros of eigenfunctions [9, pp. 107-108],
it follows that the interior zeros of u,(x) lie between the corresponding zeros
of ¢F(x), where ¢F are the solutions of

o) +(R* +1,)0;=0.

0 (a)=sina, 0} (a)= —cos ,
and where
R* = max r(x), R = min r(x).
as,x<h as. xs b

For the case sin @ 0 and sin f+# 0
oi(x)=ccos(si(x—a)+d;)).

where ¢ Is a constant,

hn

sE=(R" +4,)" = P

11+ 0(1/n) .

and. from the boundary conditions,
or =0(1/n).

Thus the zeros of ¢)(x), and hence also of u,(x). are given by

a+ [(i+3)/n|(b—a)+ O(1/n’), i=0....n— 1. On replacing n by n + | we
obtain for our interpolation points
i+ (1/2 1
X = +l—+—ul(b~a)+0(—z). i=0...n (22)
n+1 n
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Similarly. for the case sin¢+ 0 and sinff=0

iny 1+(i/2) i ( i ; i ;
v e+ ”"%‘zg}"z'j (!} - (1) +- (} { }“} P dh L

and for the casc sin ¢ = sin == 0

l'!? l % l / ; ) : i " 13
XM b e (b a) + O ( ~ ) IR Y 1249
n+ 2 n

We now seek to show that for these interpolation points the conditions (7)
and (8) are satisfied. In rough terms this is possible only because the off
diagonal elements of K {x,.x;} are very small for these points, while the
diagonal elements are large. (That is certainly not true for arbitrary choices
of the points.) We shall work out in detall the case sine # U and sinff « 0.
for which K (x 1) is given by (19}, and the interpolation pomts by (221
With the aid of the easily derived formula

sinqu o« 1y # ]

D,,(U) = 724[21(»1{)’5 5 costr = 1y
we find for this case
XX S B
D o{r i Y O e L i
. ( b -a g {z 1}
and
FoX, R X, - 2a | Ty
D, (7 T e (1) O (= i
”( b a ) 5 (- (,J,) =
= O N
Thus from (19) we have
K x.x)=0 (). % 125
i)

(because of a cancellation of the (1) terms), and

4
K,,(x,.,x,.}:zf:—(; + OU) {263

Thus

. & S;_K“(x"’;‘ﬁ!;)_izo (logn)*
oien 7y Ko{xp,xg) n

i%]
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and
n 1
N
— K, (x;.x)) o).
Therefore the conditions of Theorem 1 are satisfied if # is sufficiently large,
A similar argument yields the estimates (25) and (26) again if sin a # 0
and sin f# =0, or if sin « = sin § = 0. Thus in all three cases the conditions of
Theorem 1 are satisfied for large n. It then follows from Theorem 1 that the
proposition stated in Section | is valid for the particular boundary-value
problem defined by (12) and (3).
The last step is to extend the results to the more general boundary-value
problem defined by (2) and (3). Now Titchmarsh |9. p. 22| points out that
the transformations

r=1 p(x')

¢

Sdx’ (27)

and

u(x) = h(x) wir). (28)

where

R ! A
h(x)=p(x)"* exp ( 7‘ Zf:/: dx’ |,

transform the differential equation (2) into the equation

W) )+ Al w(n) = 0. (29)
where ) ‘
b pi(x)g(x) 3p/(.\')'7 o)
AP Ty e 2 T g Y

The new interval is |0, d|. where

Obviously w(f) vanishes at 0 or 4 if and only if u(x) vanishes at ¢ or b,
respectively, More generally, the boundary conditions (3) transform into
unalogous boundary conditions for w(t), which we write as

cos Ew(0) + sin Ew'(0) =0,
(30)
cos y w(d) + sin y w'(d) = 0.

where & and # are real numbers.
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Let the eigenvalues of the boundary-value problem defined by (29) and
(30) be A,, Ay and let the corresponding eigenfunctions be w,, w,..... Then
the original boundary-value problem has the same eigenvalues. and the eigen
functions g, U, ..... given by

u,(x)=h{x) w,(0).

A simple argument now establishes for the general problem that ¥ |a, b].
Le.. the space of continuous functions that can be uniformly approximated
by linear combinations of u,..... u, in the sense that #,(/) - 0. is just Cla. b]
if sina 0 and sin §+ 0, and 1s the set of continuous functions that vanish
at g or b, respectively, if sin ¢ = 0 or sin f = 0. We argue as follows: To each
f€ Cla. b} we may define a corresponding function FeClo.d] by

F(x)= h{x) fir).

If # and 7 denote the minimum and maximum values of [A{x)], then it s
easily seen that

n 1 i )z i 1

;5 i ! {1 N

h H ‘:_c,-n,.i !} cu <h N/
(-0 i (i HES

f-’ i
gl
if ¢g.n ¢, are any real numbers. It follows that f can be uniformly approx
imated on |a.b| by a linear combination of u,...., u, if and only if /can be
uniformly approximated on |0, d| by a linear combination of ... w,. But
we know already that the latter holds provided that f(0) =0 if sin &= 0 (or.
equivalently. if sinu=0) and f(d)=0 if sin n =0 (or. equivalently, if
sinff=40). It follows that f& f’/ia bl provided only that flay=0 if
sinag=0.and f(h)y=0 i sinff=

Finally. we establish the mean- wmﬁrgemc property  of L. With

fe€#lab) and f deﬁned as above. let * denote the unique linear
combmalmn of Wg.....w, that interpolates / at the interior zeros of w, (1)
Then it is easily seen that

‘X

' i" ;
L) = h{x) 70,
and in consequence,

R . N . » o . ~

L) = £ h(x) Fplx) dx=| |20 = A dt

] Y0
But the right-hand side converges to zero by the limited form of the
proposition established for the special case earlier in this section. Therefore
we conclude that

A

Hm | L (x) = S0 wx)dx =0

no s
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where

— 2 ~1/2 %# gx)
w(x)=h(x)"* p(x) =20 exp <(( oo dx )

In a similar way we also obtain

b

1L = [; LG £ wix) da l )

= [l 0~ FoF er "

n
[= X e

i 0

I8 s

H I}

<c¢' min 'fl Nyl =AU
Cn i 0

o

where ¢’ is a constant. The proof of the proposition stated in Section | is
now complete. 1

4, FURTHER RESULTS

For the particular eigenvalue problem defined by (12) and (3). the
conditions in Theorem 1 are also satisfied for some other choices of inter-
polation points. The known results are stated in the following:

LEMMA. Let the interpolating functions be the eigenfunctions u,..... u, of
the boundaryv-value problem defined by (12) and (3), with the eigenfunctions
ordered so that the eigenvalues increase. Then the limit (1) holds. swith
w(x) =1, if the interpolation points x;. i =0,....n. are given by any of

(a) ifsina+#0andsinf+#0
x;=a+ [(i+3)/(n+ Db a).
or
x;=a+ |iftn+)|b-a).
or

Xp=a+ [+ D)/t 2)Nb ~ a):
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or

or

or

or

IAN H. SLLOAN

(b) ifsina+0andsinff=0
x;=a |+ B+ Db -ak
Xx,=ad [+ Db - akn

i

xy=a |+ )y Db —a)
(¢) ifsmu=snff=0
Np=a b |+ D/ 2D - a).

Voemack [ Dm e a

X, [t s i)}(h al.

The first formula for x; in each of the three cases ts just the corresponding
asymptotic formula for the interior zeros of u, (X} {see (22)-(24)). hence

for

these points the result has effectively been established already. The other

results follow in a similar way. starting from the asymptotic estimates

(19

i

H(21) for K,(x,p).

REFERENCES

P. 1 Davis. Interpolation and Approximation.” Ginn (Blaisdell). Boston, 1463
P. ErRDOS aND P, TURAN. On interpolation. 1. Quadrature and mean converaence in ihe
lagrange interpolation, Ann. of Math, 38 (1937). 142-155.

. €. M. Jensen. Some problems in the theory of interpolation ny Swurim Liouviiic

functions. Trans. Amer. Math. Soc. 29 (1927). 54. 79,

. SoKarun, “Total Positivity.” Vol. 1. Stanford Univ. Press. Stanford. Calif., 1968,
. L P. Naranson. “Constructive Function Theory. Vol HI1. Interpolation und Appros

imation Quadratures.” Ungar. New York. 1965,

. G PoNrval Lagrange interpolation at zeros of orthogonal polyoomuals, o " Approx

imation Theory. I (G. G. Lorentz, C. K. Chui, and L. L. Shumaker. Eds. . Academic
Press, New York. 1976,

T3 Riviin, “An Introduction to the Approximation of Functions,” Guinn (Blaisdedls

Boston. 1969,

. G SziGH. “Orthogonal Polvnomials”™ Amer. Math. Soeo Cobioguium Poblcation:

Vol 23, 4th ed.. Providence. R.1.. 1975,



NONPOLYNOMIAL INTERPOLATION 7

9. E. C. Trrcumarsi,  “Eigenfunction  Expansions  Associated  with  Second-Order
Differential Equations,” Part 1. 2nd ed.. Oxford Univ. Press (Clarendon), London/New
York, 1962.

10. A. ZyGMUND, “Trigonometric Series.” Vol. 1. Chap. 10, 2nd ed. Cambridge Univ. Press.
Cambridge. 1959,



