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Here interpolation is meant in the following sense: givenfE Cia. b I. and given a
set of distinct points in la, b I and a linearly independent set lu rl " ... un I of
continuous functions on la. b I. the interpolating function L:, is the unique linear
combination of UO' .... un that coincides with / at the given points. if such a linear
combination exists. In the classical case of Lagrange interpolation. u,(x) is a
polynomial of degree i. Here we allow other choices. and prove a generalization of
the mean-convergence theorem of Erdos and Turim: it is shown that if a certain
condition is satisfied, then L~ converges to J, in an appropriate L, sense. fix all
continuous functions/for which 1"(/) -+ O. where 1"(/) is the error of best uniform
approximation by a linear combination of uri ..... Un' In particular. this mean­
convergence property is shown to hold for interpolation by the leading eigen­
functions of a regular Sturm-Liouville eigenvalue problem. if the interpolation
points are taken to be the zeros of the "next'· eigenfunction. (The eigenfunctions arc
ordered so that the eigenvalues increase.)

I. INTRODUCTION

In this paper interpolation refers to the process of constructing a
continuous curve through the points at which the values of a continuous
function are known. More precisely, suppose that I is a continuous function
on a closed interval Ia. b I, and that its values are known at 11 + I distinct
points X~"I,... , x~") in the interval. Traditionally. the interpolation between the
points has been carried out with polynomials or piecewise polynomials. Here
we allow the interpolating function to be of the form

"
L~,(X) = \. aju;").

i 0

where lU~">'... , u~") f is a linearly independent set of real-valued continuous
functions on [a, b I. The coefficients ao,... , a" are of course determined by the
interpolation requirement,

L~,(x;"») = I(x;"»).
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Clearly, L;, exists and is unique for all JE Cia. b I if and only if the matrix
\u:")(x;"')1 is nonsingular.

An interpolating function L;, may exist and yet be not at all a good
approximation to f (Think of polynomial interpolation at equally spaced
points.) In the present work our interest is in showing that under certain
conditions L;, is a good approximation to f when 11 is large. More precisely
we show lhat under appropriate conditions L;, converges to /' in a certain
mean-square sense: and also that the error in this sense is less than ;1

constant multiple of the error of best uniform approximation to f by a linear
combination of u;,,,· ..... U;:'l.

Little seems to be known about the convergence of interpolatory approx
imations. except for three special choices of the interpolating functions <

polynomials, trigonometric polynomials. and splines. In the polynomial case
it is known that the interpolation points must be carefully chosen. but that if
an appropriate choice is made then the convergence behavior of L;,. m
variety of senses. is highly satisfactory ifI is reasonably well behaved. (For
summaries of known results for these cases see II. 5- 7. 10 I.) But for other
choices of interpolating functions it seems that little or nothing is known
about convergence, and consequently no guidance is available as to how ((,
choose the interpolation points. The lack of such guidance makes inter
potation with respect to nonpolynomial systems a risky enterprise in
practice.

The first aim of the present work is to extend to more general systems tht:
celebrated theorem of Erdos and Turim 12.5. Chap. 3. Sect. 3 i on the mean
convergence of polynomial interpolation, The extension i" ',tatet! ""
Theorem] in Section 2.

The Erdi.)sTuran theorem states: Let wE L I(a. b) and satisty (1)(.1') I)

a.e. on the finite interval la, b I. and let IPm I be a system of polynomials
orthogonal with respect to (!) on the interval la, b I, with P", of degree 111. If
L~ denotes the unique polynomial of degree ~n that interpolates I at the
zeros of PII < I (x). then

.h

lim ! !L;,(x) /(x)1 1 w(x) dx O.
n -.j a

for alllE Cia. b I·
An important corollary of the Erdos-Turan theorem. \in the

Banach-Steinhaus theorem. is that

Ii L;,- f i: ~ cE,,{/).

where c is a constant, Ii· II is the mean-square norm

I h II ,
Ilull= J" lu(x)I'w(x)dx
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and En(f) is the error of best uniform approximation to f by a polynomial of
degree <,n,

E"Cf) = min III pill'
fl E '~'!

Thus the Erd6s-Tunin theorem guarantees not only the convergence of 1/, to

! but also its rate of convergence-the convergence is at least as fast as that
of the best uniform approximation to!

Theorem 1, our generalization of the Erd6s-Turan theorem. requires for its
statement a generalization of E/1U). namely.

min ill
.j (1 .. ".fI

\. c;u;'IlI,.
i 0

Thus r'ntfl is the error of best uniform approximation to f by a linear
combination of u~"),..., u:,"'. Theorem I states. in rough terms. that if a certain
condition holds, then II L;t -III converges to zero for all continucus functions
f for which i!,,(f) -+ 0. Moreover. the theorem also yields

for all sufficiently large n, so that as in the polynomial case the theorem
guarantees not only the convergence of L;, to .r but also its rate of con
vergence.

A general theorem without particular application is vacuous. We have
therefore applied Theorem I to the case of interpolation by the eigen
functions of a Sturm-Liouville eigenvalue problem, to obtain the followlf1g
proposition. No previous convergence results for this system seem to he
known. (The paper by Jensen 131 uses interpolation in a different sense from
that used here.)

PROPOSITION. Consider the eigenl'alue problem

p(x) ul/(x) + q(x) uf(x) + !r(x) + I, Iu(x) = 0,

with boundary conditions

casa u(a) + sin a uf(a) = 0,

cosfJ u(b)+sinfJ uf(b)=O.

(2)

(3 )

where p E e2 la, b /' q E C 1!a, b I, I' E Cia, b I, p(x) >0, and q(x), r(x), (t, and
fJ are all real. Let un' U I , •..• be the eigerifunctions, ordered so that the eigen­
values An are increasing, and let L;, be the unique linear combination of
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un ..... Un that coincides with f at the n + I zeros of II" t(x) that lie in the
open interval (a. b). Furthermore. let

I . .'X q(x') )
w(x) = ··~exp (I ---dx' .

p(x)." PIX') ,
(4)

Then the limit (I) holds for all fE Cia. b I. provided f satisfies f(a) = 0 if
sin a = O. and fIb) --= 0 if sin /i = O. Moreover

II L;, - f ~ c/"U).

where /"cn is the error of best unijemn approximation to I hI' linear
combinations of un.· ... Un' and c is a constant.

The proof is given in Section 3. Because w(x) given by (4) is bounded
below by a positive constant. the result also holds if w(x) is instead set equal
to l. However. the weight function given by (4) is in a sense the natural
weight function for this problem (see Section 3).

The proposition as stated allows no freedom in the choice of interpolation
points. However. for the special case p(x) L q(x) 0::= 0 the same result holds
also for some other choices of the interpolation points. The details are given
in Section 4.

To illustrate the above proposition. consider the following eigenvalue
problem. based on the Bessel equation:

I (' F' )u"(x) + ~~ u/(x) + )'--.? u(x).", O.

with boundary conditions

lI(a) = u(b) "" O.

where 0 <a < b. The eigenvalues All = s;, are determined by

J,(s"b) Y,(slIa) = Y,(s"h)J,(slla).

and an eigenfunction UII corresponding to ;'11 is

U,,(X) J,.(S"X) Y,.(s"a) }',(S"x)J,(s"a).

The proposition asserts that interpolation based on the leading eigenfunctions
Un ..... 1.1 /I' with the interpolation points taken to be the interior zeros of
1.1" 0 1(.x). converges to f in the mean-square sense for all continuous functions
f that vanish at a and b. It also asserts that the mean-square error converges
to zero at least as fast as the error of best uniform approximation to f by a
linear combination of 1.1 0 ..... 1.1".
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2. GENERAL THEORY
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We suppose that the interpolating functions uj") and interpolation points
xin

), i = 0,... , n, are specified for all n ~ 0, that L;, is defined as in the first
paragraph of Section 1, and that (JJ E L!(a, b) is a given nonnegative weight
function. The finite-dimensional subspace spanned by ult',...,U;/II is denoted

by Un'
Corresponding to the choice of the interpolating functions !u~nll, there

exists a natural space of continuous functions within which to set the theory:
let ',(/ia, b i c Cia, b1be the subspace of continuous functions / on la. b I for
which I,Jf) --t O. It is easily verified that ',(/ Ia, b I is a closed subspace of
CI a, b I with respect to the uniform norm, thus f,(' Ia, b I is a Banach space in
its own right.

The first result is a necessary and sufficient condition for convergence to
hold for all/E f!/Ia, bj. Here IILnl1 is defined by

LEMMA. The limit (1) holds for all fE ',(/ Ia. bI if and only (/

sup II LJ < ro.
n

1/ either condition holds then

(5 )

(6)

where c is a constant.

Proof (<=) ~pose that (5) holds. If/Ef,(/Ia,bl and uE Un then

IlL;, -/11 = IIL~ 1/1 (/-- u)11
~IIL~ 1/

111+llf-ull
~ IIL"I[ [1/- u + M[lf- u[I.,

where
M= (·(W(X)dx·)!f2.

" a '

Since u is an arbitrary element of U
II

it follows that

IIL~ - fll ~ (sup IILml1 + M) 7,,(/),
m

which converges to zero as n --t ro because
holds with c = sUPn II L"II + M.

c;?la, 61. Also (6) clearly
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It follows from the assumption that

supll'~;,il < 00.

for each f in !('Ia. b I. Then (5) follows from the Banach-Steinhaus theorem.
because !(/Ia. bI is a Banach space. I

Now define the inner product

.1>

(II. r)c, I II(X) 1'(x) w(x) dx.
'0

and let {I':;" ..... c;;11\ be any baSIS for U
II

which is orthonormal with respect
to this inner product~,-that is.

() ~( i.j ~ 11.

(From this point on we shall omit the label II on 1':"'.1/;/11. cte. when there IS

no risk of confusion.) Then define

K,,(Y.r)- \' f' )1)1').
I (\

a quantity that is clearly invariant under u change from one orthonormal
basis to another. and that is closely related to orthogonal projectIOn onto
Un: in fact K,,(x. y) (1)( y) is the kernel of the integral operator that pf(lJects
orthogonally onto U",

We now state the princl])al resull. (Note that the first condition In the
theorem will in most cases be satisfied only for special choices of the poinh
x" ..... .\"".)

THEOREM 1. Suppose that jiJr all 11 sl{Olciel1lly large we hace

alld
11 I
\' ---~111.

i() KII(Xi' .\)

j 0..... iI.

(8 )

where p alld m are constants. Then L:, exists and is unique lor n sufficient(l'
large, alld the limit (1) holds for all (f'/ Ia. b I. Moreover lor n su;Olciently
large

where c is a constant.



NONPOLYNOMIAL INTERPOLATION 103

The theorem is proved below. First. however. we show that for the
polynomial case the theorem yields the Erdos-Tunin result stated in
Section I. If we assume for convenience that the orthogonal pollynomials
{PI/I satisfy IIP,,!I L then for this case we have. from the Christof­
fel-Darboux identity 18. p. 431.

"
K,,(x.y) = '\' Pj(x)Pkr)

i {)

kn P,,+,(x)P,,(.1')-P,,(x) • (.1')

k,,! j X -.r

where P,,(x) = k"x" + .... Thus if xO ' .... x" are taken to be the zeros of
P",j(X), then for [*j we have K,,(xi.xj ) =0. so the condition (7) is
certainly satisfied. On the other hand it is shown by Szego 18. p. 481 that

where ,ili is the Christoffel number (or. in other words. the Gauss quadrature
weight) associated with the point Xi' Thus

" I "'\' = '\' il·= w(x)dx Xl.
iii K,Jt,.x i ) iii"

where in the last step we have used the fact that the Gauss quadrature rule
2..: 11, g(X,) ::: .r~ g(x) w(x) dx is exact for the function g(X) == I. Thus
Theorem I is applicable to the polynomial case. and we recover the
Erdos-Turim result.

Proof of Theorem I. Let;. i E U,/ be defined by

and let A iln be the square matrix defined by

A I" I _ • ( • ) _ Kn(x i' x)
U -Ai X j - • •

K,,(X i • Xi)

[=0..... 11.

i.j = 0..... n.

(9 )

We shall show that A (n) is nonsingular if n is sufficiently large. from which it
follows that L;, exists and is unique for large n.

If 111·111 denotes the matrix norm

"IIIA!"IIII = max \' IAI"II.
O(~j';;_l1 i() I /J
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then the first condition in the theorem is equivalent to

where Jill I is the unit matrix of order n + l. From this it follows immediately
that ,1(") is nonsingular, and in fact

so that the inverses are bounded independently of 11.

Now define II E U" by

"
11 = ~ (A\>!; Ih).,.

k Il

Then it is easily verified that

i==O....• I1. ( 10)

and from this it follows that the interpolating approximation L;, is given by

L;,(x) = ~ l/x)/(x , ),
i 0

(11 )

The latter expression is analogous to that for Lagrange interpolation in the
polynomial case, and the functions Un ,.... I" I correspond to the fundamental
Lagrange polynomials.

It follows from (10) and (II) that

tl tl

'I II12 'I I ",' "," ' '.'
1 L,,! = (L", L,,) = __ J (xJUI.I;)./ (.\)

i OJ \)

I'
,('1'111/(") 11'1 1 ",' ",' '(1 1 )1'1/''" ,'j __ IA"A( :. c'

/.;, (I I n

Now from (9) and the definition of K" it follows that

thus with the aid of the conditions (7) and (8) in the theorem we have

'1 t1

'\' '\' I' '; , 1__ (Ak,~,,)I~( +p)m.
k () I II
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Therefore for n sufficiently large we have

IIL~112 <(1 - p) 2(1 +p) m 11111;.

and hence
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the right-hand side of which is independent of 11. The remainder of the
theorem now follows from the lemma. I

It may be instructive to note that in the classical case. where If; is a
polynomial of degree i and Xn ..... x" are the zeros of Pili 1(x). we have the
simplifications

Thus in the classical case

n Ii

·IL f ,!2 / \' \-, 1 1)11'1'1 2
1.,,11 ~ __ I( ;. il. If

j n J I!

11 ,fJ

\ ' ~j 111 'f = I w(x) dx 11111 2
, •

i 0 • {}

so that it is almost trivial to show that the norms IIL"li are uniformly
bounded. In general. however. that is not true.

3. INTERPOLATION BY STURM~LIOUVILLE EIGENFUNCTIONS

We now prove the proposition stated in Section 1. on the mean
convergence of interpolation by eigenfunctions of the boundary-value
problem defined by (2) and (3).

As it stands. that boundary-value problem is not in self-adjoint form. but
it becomes so on multiplying (2) by the integrating factor w(x) defined by
(4). It then follows from the classical theory that the eigenvalues are real and
have their only accumulation point at +00. and that the eigenfunctions
UI!' If p ...• are uniquely determined apart from a multiplicative factor. and are
orthogonal with respect to the weight function w(x).

Moreover. it follows from the work of Gantmacher and Krein (see /4.
pp. 33~36 j) that un + I (x) has exactly 11 + I zeros in the open interval (0. b).
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and also that the matrix 1ui(t) I:'.i 0 has nonzero determinant if to ..... I" are
any distinct points in (a, b). From these two properties it follows that the
interpolating function L~, which is the linear combination of UII ..... lin thai
interpolates f at the interior zeros of till' fer). exists and is unique for every
value of n.

The task before W' is to prove the mean convergence of £.;, to I for
Cia. b I. provided that f(a) vanishes if sin (1 = O. and l(b) vanishe~ if

sin /3 = O. We first prove the result for the simpler differential equation

unix) Ir(x) 1-;, lu(x)'.:: o. ( 12)

and the boundary conditions (3). and then at the end of the section extend
the result to the more general problem.

The first step is to identify. for this simple problem. the space (" lao h j. i.e.
the space of continuous functions for which /"e/')·' 0 as /1> (f) It may he
shown that every continuous function f belongs to /IC!. h provided that
f(a) = 0 if sin (j, c= 0 and f(b) 0 ir sin /f O. Consider first the ca~l;

sin a*,O and sin 11*,0. Given CI a. b I and I: O. the Weierstrass theorem
assures us that there exists a cosine polynomial of the form

g(x) ~!, ai cos (irr x a)
o ,f", a !

,;uch that ( < 1:/2. In turn g can be ul1lformly approximated to an
accuracy or e/2 by the 11th partial sum of its Sturm Liou','ille series Wiih
respect to II". III ..... if Jl is taken sufficiently large. This follows from a resuiI
of Titchmarsh 19. Eg. (1.9.3) I. which shows that for integrable g the partial
sums of the Sturm--Liouville and Fourier cosine series for g difTer by ;1

quantity that is uniformly of order o( 1). provided sin u 0 and sin lifO. (i\

trivial extension of Titchmarsh's argument \s require" (i', establish
uniformity.) Of course with g defined as abovl;; the h)urier \,;dSlf1e series of "
is just g itself for 11 sufficiently large. so the result follows. A 'simiLu'
argument holds if sin U j 0 but sin /i (L or sin SiD ji' 0, except <hal
one must now use trigonometric polynomials that vanish at nne or both ends
as appropriate-,·-in the latter case, for example. the cosine polynomials must
be replaced by sine polynomials. The argument then goes through exactly ;h

before, provided that .llx) vanishes at one or both ends as appropriate.
The next step is to prove the mean convergence of l.;, tor for ai'

X/la. b \. For the present case of the differential equation j 12). the weight
function defined by (4) reduces to w(x) L so that the inner product
becomes simply

(u.c) li(x)/,\xldx.
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If we assume for convenience that the eigenfunctions are normalized by
(u i , uJ == II uil1 2 = 1, then the orthogonality relation for the eigenfunctions
becomes

i,j= 0, I,....

Consequently, the kernel Kn{x,Y) can be written as

11

K
I1
(x,y) = \. ui(x) ukr).

o

For Theorem 1 to be applicable we must show that K
I1

satisfies the
conditions (7) and (8), where x O..... x

l1
are the zeros of Ul/1j{x), Our

approach to this is to develop asymptotic expressions for K,,(x i • .\) by
means of the contour integral methods used by Titchmarsh /9, Chap. I / to
study Sturm-Liouville series.

If i is an arbitrary complex number, Titchmarsh shows that Green's
function for the differential operator in (12) and the boundary conditions (3)

IS

G(x, y; X) = xix; A) o( y; A)/w(A).

= o(x; ),) X( y: A)/W(A),

y:S;;x.

where 0 satisfies the differential equation (12) and the boundary conditions

¢(a: A) S111 U. o'(a:).) ··cosa. (13)

X satisfies (12) and the boundary conditions

X{b:),) =-= sin fl,

and wU) is the Wronskian

x' (b: A) ··cos p. ( 14)

Titchmarsh also shows that w(),) is an entire function of ), with zeros at the
eigenvalues Ao';' j , ... , and that the residue of G(X, y: ),) at ), IS

u
l1
(x) u,,{y). It follows that KII(x,y) can be evaluated by integrating

G(x. y; ),) around an appropriate contour in the ), plane.
Now let J. = S2, and write s C~ (J -t il. with:1 rL Then Titchmarsh shows

!9. p. J0 I that if Is is sufficiently Jarg.: .. then

O(x;),)=sinacoss(x a)+O( si I e il
" "').

if sin u *' O. and

Ao.{ ') sin a) .t.O(I'sl,. 2 ("I IX "'.).'!' x: A = -cos a ----~:'-_._...__. .
s
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if sin a = O. Similarly.
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tP'(x;Al=-ssinasins(x a)+O(e,liC' (II).

if sin a*, O. and

1/I'(x;;.)=-cosacoss(x~.a)+O(lsl le il '" (II).

if sin ex = O. Similar asymptotic expressions hold for X(x;),) and X' (x; I.).
In each of the above expressions, and in similar expressions throughout

this section, the error terms are uniform for a ~ x ~ b. Thus. for example.

10(lsi I elll (\ (I))I.~c sl I ell'l\ (II

where c is independent of x and s.
It follows from the asymptotic expressions for 9(x; A) and X(x: I,) that

W(A) = sin ex sin fJ s sin s(b - a) + O(el!l!> (I').

if sin ex *' 0 and sin fJ *' o.
W(A) ~sinacosfJcoss(b--a)+O(lsi le lllU' !II).

if sin a*,O and sin fJ = O. and

sin s(b a)
w(X) = cos a cos fJ ------- + O(ls I (I').

s

(15 )

if sin a = sin {J' = O.
First consider the case sin ex *' O. sin {f *' O. Following Titchmarsh

\9 p. 13 \. for this case we take the upper half of the A contour to correspond
to the quarter square in the s plane defined by

and

(]
(n + (1/2)) IT
~-~-_._~

b a
( 16)

(/1 + (1/2)) 7[. • 0---- ):- (];o; .
b~ a

(n + tI/2)) Jl
{=

b - a
( 17)

The lower half of the I. contour is then obtained by making the contour
symmetric about the real axis.

On this contour we have

Isin s(b -- all > Ae'1il/J ,n

where A IS a poSitIve constant. Hence it follows from (15) and from
Rouche's theorem \9. p. 19 \ that for n sufficiently large there are exactly
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fl + I zeros of w(l) inside the contour. Moreover, for A on the above contour
we have

I I I (' I ) I--,-=. .. 1+0 -- .
W(A) SIn a SIn f3 S SIn s(h -- a) , is,

Thus for sin a * 0 and sin fJ:f 0 it follows that

, coss(h-x)cosS\ -a), 0(' I
G(X.I':A)=. + ---,e

. SSIns(h 0) ,S"
( 18)

for ), on the contour and y ~ x.
A similar argument holds if sin a *0 and sin f3 ,~, O. except that the

contour needs to be modified by replacing n +t by fl + I in (16) and (17).
and sin s(h - 0) has to be replaced by cos s(b 0). The resulting asymptotic

expression for G(x, y: X) is

sin
(1(x.y:;() = - -x)coss(y-a) + 0 (_L"e (il\ \1).

scoss(b a) , sl'

for J, on the contour andy ,s; x. Finally. if sin a :.= sin /5 = 0, then 11 ! needs
to be replaced by n + ~ in (16) and (17). and the result is

SIl1- x) sin sty - a) ,'I
C(x. y: A) =-- -'---,-"----'-------'.---- + 0 (~-, e 11'( '" ,n).

ssins(b a) ,Is'- I

fer ;( on the contour and y ,s; x.
In each of the three cases we have. for n sufficiently large.

if the integration is taken around the appropriate A contour defined above.
For the case sin a*,O and sin f3 *0 we find, by using (18) and then
integrating explicitly,

I [ (' x I') (' x + l' 2a) jK (x. v) =-- D 71 --'- t D ,71--"--
n. b-a _ n h a. " b a"

x:fy.
. I )+ 0 .
(nlx-yl,

" ) I I (' 2x - 2a ) I
Kn(x,x = b-a lntD" J[ b-a Jto(I).

(19)
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where Dn(£)) is the Dirichlet kernel,

e 1 \", 'e sin(11 + (1/2)) ()
D ( ) = - + cos I = --------

" 2 fl 2 sin el2 .

Similarly. for the case sin ex *' 0 and sin IJ = 0 we tind

'. I I II'( X .1")' III( x+y 2a)1
KII(c\,y)= 6-a lD" l1b_~ + D" l1-b-~-;--

(
1 )+0 -----

I1lx- .1'1,'
(20)

. - I ~ III (' 2x - 2a ') JK,,(x,x)--- 11 +- D" l1----, + 0(1).
b-a b-a

where

II) fJ _ \', . (. ~) .)_ sin(n + I) ()
D/1 ( ) - _ cos 1+ 2 6 - 2' e!2 .

ill' S111 ,

and for the case sin ex = sin fJ = 0

(
I )+0 -,-------;.

l1i x -YI,

K,,(x.X)=--.-~-111
h··" a

x*y.

D (' l1 _~'~ __l-!3-) I+ O( I )./1! I h --. a

(21 )

The next step is to tind asymptotic estimates for the zeros of u" c )(xl. That
requires first the development of asymptotic estimates for the eigenvalues
)'" = s~J' 11 = O. 1..... Consider the case sin ex * 0 and sin fJ * O. For this case
we know already that

(11-(l/2))l1
boo a

< sn <
(11+(1/2))n

b-a

if n is sufficiently large. A tighter estimate for s" follows from the property
W(A/1) = O. which by (15) implies

s" sin s/1(6 -- a) == O( I).
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On substituting sn = mrl(b - a) + Tn it follows readily that Tn = O( lin), and
hence

n7r ( I \
sl/=-b-+ O .-).-a n

Similarly, for the case sin a * 0 and sin fJ = 0

_ (n + (1/2» n (~)
sn - b + 0 ,

-a n

and for the case sin a = sin fJ = 0

_ (11 + I) n (.~ ..)
s//- b + 0 .-a 11

From the classical results on the zeros of eigenfunctions [9, pp. 107-1081.
it follows that the interior zeros of ul/(x) lie between the corresponding zeros
of 9;(x), where 9; are the solutions of

9,; + (R ± + AI/) ¢,~ = 0,

¢l~(a) = sin a.

and where

0,; (a) = -cos a.

R + = max r(x),
as.-x h

For the case sin a * 0 and sin fJ * 0

R min r(x).
a'S x h

91~(x)=ccos(s,;(x-a)+c5,~),

where c is a constant.

, !'.., n7T. ..,
s,; =(R" +J'n)'= b-a [I +O(I/n-)I.

and, from the boundary conditions,

6; = O(I/n).

Thus the zeros of ¢,; (x), and hence also of un(x). are given by
a + IU + ~)/I1I(b - a) + 0(1/11 2

). i = 0,... , 11- 1. On replacing 11 by 11 + I we
obtain for our interpolation points

. (1/2) . I
x(l/l=a+ 1+ (b-a)+O(-).

I 11 + I . 11 2 i = 0.... , n. (22)
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Similarly. for the case sin a* 0 and sin IJ = 0

i t (1/2)
a +----~-~ (b - - a)

, II + (312)

and for the case sin u sin /5 0

, I
O( IL

i t I
a t (h

1/+ 2

I ,
a) i 0 ( ~;).

II'
:1 II

We no\\ seek to show that for these interpolation POltlts thc conditions i7 I

and (8) arc satisfied. In rough terms this is possible only because the off
diagonal elements of K,,(x i • Xi) are very small for these points. while !he
diagonal elements are large. (That is certainly not truc for arbilran chOice'
of the points.) We shall work out in detail the case sin u 0 and sin IJ i O.

for which /(,,(.\ . .1') is given by (\9). and the interpolation P0lJ11s b" (22
With the aid of the easily derived formula

D,,(fl)

we find for this case

sin (11, i.Ill

2 tan Oi2
cost 11

2
i ) II.

and

1
--- ( 1)'
2

I- 0 ( _
',I /

\:- '-­
D /1 (II -I--:----'---~--­

b a
( I)' +- 0 (-~: ',j.

2 : I j

c O( I).

Thus from (19) we have

K,,(x i • Xi) 0 (' 1 ')' .
Ii ji_

(because of a cancellation of the O( I ) terms). and

11
Kn(x i • Xi) = --- + O( l).

b a

Thus

max <. LK,J~i'~~~ = 0 ('lOg 11),
O<J,,, i 0 K,Jx i , .X i ) . 11

i ±j

!2S}

(26)
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Therefore the conditions of Theorem I are satisfied if 11 is sufficiently large.
A similar argument yields the estimates (25) and (26) again if sin (1 *' 0

and sin fJ = 0, or if sin a = sin fJ = O. nlUS in all three cases the conditions of
Theorem I are satisfied for large 11. It then follows from Theorem I that the
proposition stated in Section I is valid for the particular boundary value
problem defined by (12) and (3).

The last step is to extend the results to the more general boundary-value
problem defined by (2) and (3). Now Titchmarsh [9. p. 221 points out that
the transformations

.\

I =, I p(x') I dx'.
'1/

and

u(x) = h(x) \1'(1).

where

(
I·'q(x'). ')

h(x)=p(X)14 exp - -I --dx' .
2 '(I p(x') ,

transform the differential equation (2) into the equation

(27 )

(28 )

11'''(1)+ [1'(/) +),111'(1)=0. (29)

where
I p'(x)q(x) 3p'lx)' q(x)'

;,(t)~=--p"(x)+ . ------q'(x)---- rl,\),
4 2p(x) 16p(x) 2 4p(x)

The new interval is 10. d [. where

./J

d = I p(x) I: dx.
(I

Obviously lI'(t) vanishes at 0 or d if and only if u(x) vanishes at a or b.
respectively. More generally. the boundary conditions (3) transform into
analogous boundary conditions for \I'(t). which we write as

cos c; 11'(0) + sin c; w'(O) = O.

cos 11 w(d) + sin 'I w'(d) = O.

\vhere ¢' and 11 are real numbers.

(30)
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Let the eigenvalues of the boundary'value problem defined by (29) and
(30) be Au' AI ..... and let the corresponding eigenfunctions be \1'0' ll'l .... , Then
the original boundary-value problem has the same eigenvalues. and the eigen
functions Un' Ii I ..... given by

lin(X) = hex) wn(t).

A simple argument now establishes for the general problem that it' Ia. b I.
i.e.. the space of continuous functions that can be uniformly approximated
by linear combinations of U() ..... Un in the sense that fln(f) -> O. is just CI a. b I
if sin a *0 and sin (J of:' O. and is the set of continuous functions that vanish
at a or b. respectively. if sin a 0 or sin fJ = O. We argue as follows: To each
IE Cia. b] we may define a corresponding function jE ClO. dl by

lex) = h(xL!\t)·

If hand h' denote the minimum and maximum values of h(.\')I. then it is
easily seen that

h n 1'1 'I'\' .! / I.
,- CiH'i il ~ I. j
I 0 1')

11

"o' eli.
- I I
i (l

,
.' h' ;1' f":s, I

I!'

Ii ,j

.\. CW'I',!
- I I
I /I

if CO"," en are any real numbers. It follows that I can be uniformly approx
imated on Ia. bI by a linear combination of li ll "'" /Ill if and only ifI can he
uniformly approximated on 10. dl by a linear combination of H'" •...• 'l'tI' But
we know already that the latter holds provided thatjeO) = 0 if sin ~ = 0 (OL

equivalently. if sin a 0) and Jed) = 0 if sin /7 = 0 (or. equivalently. if
sin{J=O). It follows that ;Pla.bl provided only that f(a)==O if
sin (1 = O. and f(b) = 0 if sin fJ O.

Finally. we establish the mean-convergence property of L:,. With
IE 'P')la, bl and j defined as above. let:;~ denote the unique linear
combination of ll'o ..... H'" that interpolates 1 at the interior zeros of wI! ' I(I).

Then it is easily seen that

and in consequence.

•/1

I iL;,(x) - f(xW hex)
~' a

.iI •

p(x) I 2 dx oc= I i :;;,(1) .Anl' cit,
~' 0

But the right-hand side converges to zero by the limited form of the
proposition established for the special case earlier in this section. Therefore
we conclude that

.0

lim I IL;,(.\')-/(I:)i w(x)dx=O,
I," j '"
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where

I (...\ q(:c') )
W(X) = h(x) 2 pix) -1/2 = --. exp I ---. dx'·.

pix) '11 p(x')

In a similar way we also obtain

II L;/ - fll = lJ: IL~(x) -.f(xW w(x) dx II 2

= r( iJ;,(t) -j(tW dt 1
12

l· 0 J

~ c' .min. Ilf- ~, c;u;!II' = C'''nU).
(0'····(11 i () '/

lIS

where c' is a constant. The proof of the proposition stated in Section I IS

now complete. I

4. FURTHER RESULTS

For the particular eigenvalue problem defined by (12) and (3). the
conditions in Theorem I are also satisfied for some other choices of inter
polation points. The known results are stated in the following:

LEMMA. Let the interpolating functions be the eigenfunctions Uo ..... Un qj'
the boundary-value problem defined by (12) and (3). H'ith the eigenfzllictions
ordered so that the eigenvalues increase. Then the limit (I) holds. \\'ith
w(x) == I, if the interpolation points Xi' i = 0..... n. are given by any (!{

(a) {{ sin a * 0 and sin fJ * 0

Xi = a + I(i + i )/(n + I) I(b- a).

or

xi=a+ li/(n+~)I(b-a).

or

Xi = a + IU + ~)/(II + DI(b - a);
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(b) if sin IX * 0 alld sin 13 = 0

xi=a+ l(i+'~)/(Il+~)!(b -a).

or

X,= a-1 [i/(Il + 1)!(b a).

or

I ll(b - a):

(c) i!,sinu sinf3=O

xi··~·af[(i+l)/(1112)I(b al.

or

or

X, U

The first formula for Xi 111 each of the three cases IS just the correspondIllg
asymptotic formula for the interior zeros of 11" 1(.\) (see (22 H 24 n. hence
for these points the result has effectively been established already. The other
results follow in a similar way. starting from the asymptotic estimates
(l9}--(21) for K,,(x.y).
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